When do Firms Profit from Wage Setting Power?

Justin Bloesch Birthe Larsen

Discussed by Seula Kim

Northeast Labor Symposium for Early Career Economists (NLSE) 2024

April 4, 2024

Summary

THIS PAPER

Q: What makes wage setting power result in profits for firms and how large are these profits?

THIS PAPER

Q: What makes wage setting power result in profits for firms and how large are these profits?

- Build a model of dynamic monopsony w/ search on the job & recruiting expenditure
 - Firms use both wages and recruiting expenditures to attract workers
 - · Search frictions + worker preferences \rightarrow wage setting power of firms

THIS PAPER

Q: What makes wage setting power result in profits for firms and how large are these profits?

- Build a model of dynamic monopsony w/ search on the job & recruiting expenditure
 - Firms use both wages and recruiting expenditures to attract workers
 - Search frictions + worker preferences \rightarrow wage setting power of firms
- Estimate firm wage-size elasticity based on model predictions
 - Using AKM and the decomposition of firm size and wage effects
 - · Using DiD around firm expansion and worker switching into expanding firms (Friedrich et al. 2023)

• Profit share of marginal product depends on the shape of recruiting cost

- If convex in new hires: (+) profit share
- If a function of hire/incumbent, no profit share (fully absorbed by recruiting costs)

• Profit share of marginal product depends on the shape of recruiting cost

- If convex in new hires: (+) profit share
- If a function of hire/incumbent, no profit share (fully absorbed by recruiting costs)
- D The profit share is tightly linked to the elasticity of optimal wages to firm size
 - · Wage setting power alone is not sufficient to explain profit share

• Profit share of marginal product depends on the shape of recruiting cost

- If convex in new hires: (+) profit share
- If a function of hire/incumbent, no profit share (fully absorbed by recruiting costs)
- Description of the profit share is tightly linked to the elasticity of optimal wages to firm size
 - · Wage setting power alone is not sufficient to explain profit share
- estimates of the profit share of marginal products
 - AKM: profit shares are estimated at 0.09 (single-unit firms), 0.03 (multi-unit firms)
 - Firm expansion events (Friedrich et al. 2023): switchers experience higher wage growth at expansion (but no further gains afterwards) → Indicative of elastic labor supply and zero profit share

Comments

OVERVIEW

This paper nicely:

- Investigates the extent to which wage setting matters for firm profits with a tractable model
- Offers a resolution to the existent puzzles through recruiting + separation elasticities
 - · Narrow the gaps lying in i) various labor supply elasticities and ii) profit share puzzle

OVERVIEW

This paper nicely:

- Investigates the extent to which wage setting matters for firm profits with a tractable model
- Offers a resolution to the existent puzzles through recruiting + separation elasticities
 - · Narrow the gaps lying in i) various labor supply elasticities and ii) profit share puzzle

Some comments:

- Recruiting Costs and Decomposition of Marginal Products
- Ø Wage-Size Elasticity Estimation
- 8 Alternative channel for the Profit Puzzle

RECRUITING COSTS AND DECOMPOSITION OF MARGINAL PRODUCTS

 Useful to decompose marginal products into wage, recruiting costs, and profit, which depends on the functional form of recruiting costs

$$C(N,V) = c \times \left(\frac{V_t}{N_{t-1}}\right)^{\chi} N_{t-1}^{\sigma_{\chi}}$$

- The share of wages: $\frac{(1+\chi)\varepsilon}{1+(1+\chi)\varepsilon+\sigma\chi}$, recruiting costs: $\frac{1}{1+(1+\chi)\varepsilon+\sigma\chi}$, profits: $\frac{\sigma\chi}{1+(1+\chi)\varepsilon+\sigma\chi}$
- **Higher** χ : the share of wages \uparrow , but if $\chi = \infty$, this **converges back** to the level at $\chi = 0$
- **Higher** σ : the share of **wages** \downarrow and the share of **profits** \uparrow

RECRUITING COSTS AND DECOMPOSITION OF MARGINAL PRODUCTS

 Useful to decompose marginal products into wage, recruiting costs, and profit, which depends on the functional form of recruiting costs

$$C(N,V) = C \times \left(\frac{V_t}{N_{t-1}}\right)^{\chi} N_{t-1}^{\sigma_{\chi}}$$

- The share of wages: $\frac{(1+\chi)\varepsilon}{1+(1+\chi)\varepsilon+\sigma\chi}$, recruiting costs: $\frac{1}{1+(1+\chi)\varepsilon+\sigma\chi}$, profits: $\frac{\sigma\chi}{1+(1+\chi)\varepsilon+\sigma\chi}$
- **Higher** χ : the share of wages \uparrow , but if $\chi = \infty$, this converges back to the level at $\chi = 0$
- Higher σ : the share of wages \downarrow and the share of profits \uparrow
- \Rightarrow Further insights could be provided behind this dynamics & how these parameters interact
- $\Rightarrow \rho$ = 0, ε = 5, χ = 1 assumed: how sensitive are they for the profit share?

When do Firms Profit from Wage Setting Power?

WAGE-SIZE ELASTICITY ESTIMATION

Using DiD for firm expansion events

 $\Delta \log(N_{j,t+s,t+s-2}) = \beta_s \mathcal{I} \{ \text{expansion in year } t \} + \tau_{jt} + w_{j,t+s-4,t+s-2}$

 $\Delta \log(w_{ijk,t+s,t+s-2}) = \sum_{s} \beta_{s} \mathcal{I} \{ \text{switcher arrives in year } s \} \times \mathcal{I} \{ \text{expansion firm} \} + \tau_{jt} + w_{j,t+s-4,t+s-2} + d_{j} + \kappa \hat{\psi}_{k} + \xi x_{i,t+s-2} + d_{j} + \ell \hat{\psi}_{k} + \xi x_{i,t+s-2} + d_{j} + \ell \hat{\psi}_{k} +$

WAGE-SIZE ELASTICITY ESTIMATION

• Using DiD for firm expansion events

 $\Delta \log(N_{j,t+s,t+s-2}) = \beta_s \mathcal{I} \{ \text{expansion in year } t \} + \tau_{jt} + w_{j,t+s-4,t+s-2}$

 $\Delta \log(w_{ijk,t+s,t+s-2}) = \sum_{s} \beta_{s} \mathcal{I} \{ \text{switcher arrives in year } s \} \times \mathcal{I} \{ \text{expansion firm} \} + \tau_{jt} + w_{j,t+s-4,t+s-2} + d_{j} + \kappa \hat{\psi}_{k} + \xi x_{i,t+s-2} + d_{j} + \ell \hat{\psi}_{k} + \xi x_{i,t+s-2} + d_{j} + \ell \hat{\psi}_{k} +$

- \Rightarrow Alternative story? e.g., optimal scale of firms
- \Rightarrow Hard to see it as direct evidence for the shape of recruiting costs ($\chi > 0, \sigma = 0$)

J.Bloesch and B.Larsen (discussion by S.Kim)

When do Firms Profit from Wage Setting Power?

ALTERNATIVE CHANNEL FOR THE PROFIT PUZZLE

Any alternative channel to reconcile the profit puzzle?

ALTERNATIVE CHANNEL FOR THE PROFIT PUZZLE

- Any alternative channel to reconcile the profit puzzle?
- How about firm heterogeneity in labor and profit share?
 - · Labor and profit shares vary across firms a lot and are highly skewed
 - The change in aggregate labor share results from a redistribution across firms (Kehrig and Vincent 2017; Autor et al. 2020)

ALTERNATIVE CHANNEL FOR THE PROFIT PUZZLE

- Any alternative channel to reconcile the profit puzzle?
- How about firm heterogeneity in labor and profit share?
 - · Labor and profit shares vary across firms a lot and are highly skewed
 - The change in aggregate labor share results from a redistribution across firms (Kehrig and Vincent 2017; Autor et al. 2020)
- \Rightarrow Incorporating firm heterogeneity and composition may have a different story

Conclusion

CONCLUSION

This paper:

- Answers how important wage setting is for firm profit share
- Builds a model linking monopsony + recruiting costs
- Estimates size-wage elasticity and profit share
- Helps reconcile preceding puzzles b/w labor supply elasticity and profit share

CONCLUSION

This paper:

- Answers how important wage setting is for firm profit share
- Builds a model linking monopsony + recruiting costs
- Estimates size-wage elasticity and profit share
- Helps reconcile preceding puzzles b/w labor supply elasticity and profit share

Review:

- Interesting question. Provide a tractable model with consistent wage-size elasticity estimates
- Direct evidence and importance for the channel can further be enhanced